Structure of characteristic Lyapunov vectors in anharmonic Hamiltonian lattices.

نویسندگان

  • M Romero-Bastida
  • Diego Pazó
  • Juan M López
  • Miguel A Rodríguez
چکیده

In this work we perform a detailed study of the scaling properties of Lyapunov vectors (LVs) for two different one-dimensional Hamiltonian lattices: the Fermi-Pasta-Ulam and Φ^{4} models. In this case, characteristic (also called covariant) LVs exhibit qualitative similarities with those of dissipative lattices but the scaling exponents are different and seemingly nonuniversal. In contrast, backward LVs (obtained via Gram-Schmidt orthonormalizations) present approximately the same scaling exponent in all cases, suggesting it is an artificial exponent produced by the imposed orthogonality of these vectors. We are able to compute characteristic LVs in large systems thanks to a "bit reversible" algorithm, which completely obviates computer memory limitations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covariant hydrodynamic Lyapunov modes and strong stochasticity threshold in Hamiltonian lattices.

We scrutinize the reliability of covariant and Gram-Schmidt Lyapunov vectors for capturing hydrodynamic Lyapunov modes (HLMs) in one-dimensional Hamiltonian lattices. We show that, in contrast with previous claims, HLMs do exist for any energy density, so that strong chaos is not essential for the appearance of genuine (covariant) HLMs. In contrast, Gram-Schmidt Lyapunov vectors lead to mislead...

متن کامل

Dynamic localization of Lyapunov vectors in Hamiltonian lattices.

The convergence of the Lyapunov vector toward its asymptotic shape is investigated in two different one-dimensional Hamiltonian lattices: the so-called Fermi-Pasta-Ulam and Phi(4) chains. In both cases, we find an anomalous behavior, i.e., a clear difference from the previously conjectured analogy with the Kardar-Parisi-Zhang equation. The origin of the discrepancy is eventually traced back to ...

متن کامل

Structure of characteristic Lyapunov vectors in spatiotemporal chaos.

We study Lyapunov vectors (LVs) corresponding to the largest Lyapunov exponents in systems with spatiotemporal chaos. We focus on characteristic LVs and compare the results with backward LVs obtained via successive Gram-Schmidt orthonormalizations. Systems of a very different nature such as coupled-map lattices and the (continuous-time) Lorenz '96 model exhibit the same features in quantitative...

متن کامل

Spatiotemporal structure of Lyapunov vectors in chaotic coupled-map lattices.

The spatiotemporal dynamics of Lyapunov vectors (LVs) in spatially extended chaotic systems is studied by means of coupled-map lattices. We determine intrinsic length scales and spatiotemporal correlations of LVs corresponding to the leading unstable directions by translating the problem to the language of scale-invariant growing surfaces. We find that the so-called characteristic LVs exhibit s...

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010